Molecular and antigenic characterization of a Streptococcus oralis coaggregation receptor polysaccharide by carbohydrate engineering in Streptococcus gordonii.
نویسندگان
چکیده
The coaggregation receptor polysaccharides (RPS) of Streptococcus oralis and related species are recognized by lectin-like adhesins on other members of the oral biofilm community and by RPS-specific antibodies. The former interactions involve beta-GalNAc or beta-Gal containing host-like motifs in the oligosaccharide repeating units of these polysaccharides, whereas the latter involves features of these molecules that are immunogenic. In the present investigation, the molecular and corresponding structural basis for the serotype specificity of S. oralis ATCC 10557 RPS was determined by engineering the production of this polysaccharide in transformable Streptococcus gordonii 38. This involved the systematic replacement of genes in the rps cluster of strain 38 with different but related genes from S. oralis 10557 and structural characterization of the resulting polysaccharides. The results identify four unique genes in the rps cluster of strain 10557. These include wefI for an alpha-Gal transferase, wefJ for a GalNAc-1-phosphotransferase that has a unique acceptor specificity, wefK for an acetyl transferase that acts at two positions in the hexasaccharide repeating unit, and a novel wzy associated with the beta1-3 linkage between these units. The serotype specificity of engineered polysaccharides correlated with the wefI-dependent presence of alpha-Gal in these molecules rather than with partial O-acetylation or with the linkage between repeating units. The findings illustrate a direct approach for defining the molecular basis of polysaccharide structure and antigenicity.
منابع مشابه
Structure and molecular characterization of Streptococcus pneumoniae capsular polysaccharide 10F by carbohydrate engineering in Streptococcus oralis.
Although closely related at the molecular level, the capsular polysaccharide (CPS) of serotype 10F Streptococcus pneumoniae and coaggregation receptor polysaccharide (RPS) of Streptococcus oralis C104 have distinct ecological roles. CPS prevents phagocytosis of pathogenic S. pneumoniae, whereas RPS of commensal S. oralis functions as a receptor for lectin-like adhesins on other members of the d...
متن کاملMolecular basis of L-rhamnose branch formation in streptococcal coaggregation receptor polysaccharides.
The presence of L-rhamnose (Rha) branches in the coaggregation receptor polysaccharides (RPS) of Streptococcus gordonii 38 and Streptococcus oralis J22 was eliminated by replacement of wefB with ermAM in these strains. The expression of this gene in S. oralis 34 did not, however, result in the addition of Rha branches to the linear RPS of this strain, which is identical to that produced by the ...
متن کاملCharacterization of a Streptococcus sp.-Veillonella sp. community micromanipulated from dental plaque.
Streptococci and veillonellae occur in mixed-species colonies during formation of early dental plaque. One factor hypothesized to be important in assembly of these initial communities is coaggregation (cell-cell recognition by genetically distinct bacteria). Intrageneric coaggregation of streptococci occurs when a lectin-like adhesin on one streptococcal species recognizes a receptor polysaccha...
متن کاملGlyceraldehyde-3-phosphate dehydrogenase of Streptococcus oralis functions as a coadhesin for Porphyromonas gingivalis major fimbriae.
Cohesive interactions between Porphyromonas gingivalis and plaque-forming bacteria, such as Streptococcus oralis, are considered to play an important role in the colonization of P. gingivalis in periodontal sites. Although P. gingivalis fimbriae have been reported to mediate coaggregation with S. oralis, the S. oralis molecule involved has not been identified. We identified the coadhesin of S. ...
متن کاملComparative structural and molecular characterization of ribitol-5-phosphate-containing Streptococcus oralis coaggregation receptor polysaccharides.
The antigenically related coaggregation receptor polysaccharides (RPS) of Streptococcus oralis strains C104 and SK144 mediate recognition of these bacteria by other members of the dental plaque biofilm community. In the present study, the structure of strain SK144 RPS was established by high resolution NMR spectroscopy as [6Galfbeta1-6GalNAcbeta1-3Galalpha1-2ribitol-5-PO(4)(-)-6Galfbeta1-3Galbe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 283 18 شماره
صفحات -
تاریخ انتشار 2008